Discrete Structure

 Practice Midterm Exam

 Practice Midterm Exam}

Fall 2015

Name:

Problem (1) (6 points)
a. Construct a truth table for these compound proposition.

1. $(p \oplus q) \rightarrow(p \oplus \neg q)$
2. $((p \rightarrow q) \rightarrow r) \rightarrow s$
b. Evaluate each of these expressions.
3. $(11011 \vee 01010) \wedge(10001 \mathrm{~V} 11011)$
4. $(01010 \oplus 11011) \oplus 01000$

Problem (2) (5 points)

a. Show that $(\mathrm{p} \wedge q) \rightarrow(\mathrm{p} \vee \mathrm{q})$ is a tautology.
b. Show that $\neg p \leftrightarrow q$ and $p \leftrightarrow \neg q$ are logically equivalent.

Problem (3) (3 points)

a. Express the negation of the following statement so that negation symbol immediately precede predicates.

$$
\forall x \exists y \forall z T(x, y, z)
$$

b. Determine the truth value of each of these statements if the domain for all variables consists of all integers.
$\exists \mathrm{n} \forall \mathrm{m}\left(\mathrm{n}<\mathrm{m}^{2}\right)$

Problem (4) (3 points)

Determine whether the argument is valid. If it is correct, what rule of inference is being used? If it is not, what logical error occurs?

If n is a real number with $n>2$, then $n^{2}>4$.
Suppose that $n \leq 2$. Then $n^{2} \leq 4$.

Problem (5) (2 points)

Use rules of inference to show that if $\forall x(P(x) \rightarrow(Q(x) \wedge S(x)))$ and $\forall x((P(x) \wedge R(x))$ are true, then $\forall x$ $(R(x) \wedge S(x))$ is true.

Problem (6) (2 points)

Use a direct proof to show that every odd integer is the difference of two squares.

Problem (7) (2 points)

a. Let $A=\{a, b, c, d\}$ and $B=\{y, z\}$ find $A X B$
b. Find the power set of $\{a, b\}$

Problem (8) (2 points)

Let $A=\{a, b, c, d, e\}$ and $B=\{a, b, c, d, e, f, g, h\}$ find :
a. $\mathrm{A}-\mathrm{B}$
b. $A \cap B$

